Mastering YARA Rules - Complete Guide
YARA is the "pattern matching swiss knife for malware researchers." This comprehensive guide covers everything from basic rule writing to advanced detection techniques, performance optimization, and integration with threat hunting platforms.
Table of Contents
- Introduction to YARA
- Installation and Setup
- Basic Rule Syntax
- String Types and Patterns
- Advanced Conditions
- Performance Optimization
- Detecting Malware Families
- Tool Integration
- Best Practices
- Real-World Case Studies
Introduction to YARA
YARA is a powerful pattern matching engine designed to help malware researchers identify and classify malware samples. Created by Victor M. Alvarez, YARA allows analysts to create rules based on textual or binary patterns to detect specific malware families, behaviors, or code structures.
Why Use YARA?
- Flexible Pattern Matching: Text strings, hex patterns, regular expressions
- Rich Condition Logic: Complex boolean expressions and counting
- Fast Performance: Optimized for large-scale scanning
- Extensible: Modules for PE files, ELF, network protocols
- Widely Adopted: Used by major security vendors and researchers
- Open Source: Free to use and modify
YARA Use Cases
| Use Case | Description | Examples |
|---|---|---|
| Malware Detection | Identify known malware families | Emotet, Cobalt Strike, APT campaigns |
| Threat Hunting | Proactive threat detection | Memory scans, file system hunting |
| Incident Response | Rapid triage and classification | Live response, forensic analysis |
| Automation | Automated analysis pipelines | Sandbox integration, SIEM rules |
Installation and Setup
Installing YARA
Windows Installation:
# Method 1: Pre-compiled binaries
1. Download from https://github.com/VirusTotal/yara/releases
2. Extract yara.exe and yarac.exe to a directory in PATH
3. Test installation: yara --version
# Method 2: Python integration
pip install yara-python
# Method 3: Chocolatey
choco install yara
Linux Installation:
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install yara
# CentOS/RHEL
sudo yum install epel-release
sudo yum install yara
# From source
git clone https://github.com/VirusTotal/yara.git
cd yara
./bootstrap.sh
./configure
make
sudo make install
Python Integration:
# Install yara-python for scripting
pip install yara-python
# Test installation
python -c "import yara; print('YARA Python binding installed successfully')"
Setting Up Development Environment
Editor Configuration:
# VS Code with YARA extension
1. Install "YARA" extension by infosec-intern
2. Configure syntax highlighting
3. Enable rule validation
# Vim configuration
1. Install yara.vim syntax file
2. Add to .vimrc:
autocmd BufNewFile,BufRead *.yar,*.yara set filetype=yara
Directory Structure:
yara-rules/
├── rules/
│ ├── malware/
│ │ ├── emotet.yar
│ │ ├── cobalt_strike.yar
│ │ └── apt/
│ ├── tools/
│ │ ├── packers.yar
│ │ └── pentest_tools.yar
│ └── signatures/
├── modules/
├── tests/
└── scripts/
Basic Rule Syntax
Rule Structure
Anatomy of a YARA Rule:
rule RuleName
{
meta:
// Metadata about the rule
author = "Analyst Name"
description = "Detects specific malware family"
date = "2025-10-07"
version = "1.0"
hash = "md5_hash_of_sample"
strings:
// String definitions
$string1 = "malicious_string"
$hex_pattern = { 4D 5A 90 00 }
$regex = /http:\/\/[a-z0-9\.]+\/malware\.php/
condition:
// Logic that determines when rule matches
$string1 or $hex_pattern or $regex
}
Metadata Section
Standard Metadata Fields:
meta:
author = "Security Team" // Rule author
description = "Detects Emotet variant" // What the rule detects
date = "2025-10-07" // Creation date
version = "1.2" // Rule version
reference = "https://blog.example.com/analysis" // External reference
hash = "a1b2c3d4e5f6..." // Sample hash
family = "Emotet" // Malware family
severity = "high" // Threat level
tlp = "white" // Traffic Light Protocol
yarahub_license = "CC0 1.0" // License information
yarahub_rule_matching_tlp = "TLP:WHITE" // Sharing restrictions
yarahub_rule_sharing_tlp = "TLP:WHITE" // Distribution restrictions
Basic String Definitions
Text Strings:
strings:
$plain_text = "This is a plain text string"
$case_insensitive = "MALWARE" nocase
$wide_string = "Unicode String" wide
$ascii_string = "ASCII String" ascii
$fullword = "cmd" fullword // Match complete words only
Hex Patterns:
strings:
$mz_header = { 4D 5A } // MZ header
$pe_signature = { 50 45 00 00 } // PE signature
$wildcard_pattern = { 4D 5A ?? ?? 03 } // Wildcards with ??
$variable_pattern = { 4D 5A [2-4] 03 } // Variable length gaps
$jump_pattern = { 4D 5A [2-4] 03 [10-20] 50 45 } // Multiple gaps
Regular Expressions:
strings:
$ip_address = /\b(?:[0-9]{1,3}\.){3}[0-9]{1,3}\b/
$email_pattern = /[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}/
$url_pattern = /https?:\/\/[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}[\/\w\.-]*\/?/
$bitcoin_address = /[13][a-km-zA-HJ-NP-Z1-9]{25,34}/
String Types and Patterns
Advanced String Modifiers
String Modifiers:
strings:
// Case sensitivity
$case_sensitive = "CaseSensitive"
$case_insensitive = "caseinsensitive" nocase
// Character encoding
$ascii_only = "ASCII" ascii
$wide_only = "Wide" wide
$both_encodings = "Both" ascii wide
// Word boundaries
$full_word = "malware" fullword
$partial_match = "malware" // Matches "malware123"
// Private strings (don't count in conditions)
$private_string = "internal" private
Complex Hex Patterns:
strings:
// Exact bytes
$exact = { 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF }
// Wildcards
$wildcards = { 4D 5A ?? ?? ?? ?? 04 00 }
// Alternatives
$alternatives = { 4D 5A ( 90 00 | 89 00 | 87 00 ) }
// Ranges
$ranges = { 4D 5A [2-8] 04 00 }
$unbounded = { 4D 5A [4-] 50 45 } // 4 or more bytes
// Complex pattern
$complex = {
4D 5A // MZ header
[58-62] // DOS stub (variable)
50 45 00 00 // PE signature
( 4C 01 | 64 86 ) // Machine type (x86 or x64)
}
Regular Expression Patterns
Common Regex Patterns:
strings:
// Network indicators
$ipv4 = /(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)/
$domain = /[a-zA-Z0-9]([a-zA-Z0-9\-]{0,61}[a-zA-Z0-9])?(\.[a-zA-Z0-9]([a-zA-Z0-9\-]{0,61}[a-zA-Z0-9])?)*\.[a-zA-Z]{2,}/
$url = /https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)/
// File paths
$windows_path = /[a-zA-Z]:\\(?:[^\\/:*?"<>|\r\n]+\\)*[^\\/:*?"<>|\r\n]*/
$unix_path = /\/(?:[^\/\0]+\/)*[^\/\0]+/
// Cryptocurrency addresses
$bitcoin = /[13][a-km-zA-HJ-NP-Z1-9]{25,34}/
$ethereum = /0x[a-fA-F0-9]{40}/
$monero = /4[0-9AB][1-9A-HJ-NP-Za-km-z]{93}/
// Encoded data
$base64 = /[A-Za-z0-9+\/]{20,}={0,2}/
$hex_encoded = /[0-9A-Fa-f]{32,}/
Regex Modifiers:
strings:
$case_insensitive_regex = /malware/i
$multiline_regex = /start.*end/s
$global_match = /pattern/g
Advanced Conditions
Boolean Logic
Basic Operators:
condition:
// AND operation
$string1 and $string2
// OR operation
$string1 or $string2
// NOT operation
not $string1
// Complex combinations
($string1 or $string2) and not $string3
// Parentheses for precedence
($a and $b) or ($c and $d)
Counting Conditions:
condition:
// Count specific strings
#string1 > 5 // String appears more than 5 times
#string2 == 3 // String appears exactly 3 times
#string3 >= 1 // String appears at least once
// Count any/all strings
any of ($string*) // Any string starting with "string"
all of ($http*) // All strings starting with "http"
2 of ($string*) // At least 2 strings match
3 of them // At least 3 of all defined strings
// Percentage conditions
90% of them // 90% of all strings must match
File Properties
File Size Conditions:
condition:
filesize < 100KB // File smaller than 100KB
filesize > 1MB // File larger than 1MB
filesize == 1024 // Exact size in bytes
// Size ranges
filesize > 10KB and filesize < 1MB
String Positions:
condition:
// Position-based conditions
$mz_header at 0 // String at specific offset
$string1 at entrypoint // String at entry point
$string2 in (0..1024) // String in first 1024 bytes
$string3 in (filesize-1024..filesize) // String in last 1024 bytes
// Multiple positions
for any i in (0..10) : ( $pattern at i * 0x1000 )
PE Module Integration
PE File Analysis:
import "pe"
condition:
// PE file validation
pe.is_pe
// Architecture checks
pe.machine == pe.MACHINE_I386 // 32-bit
pe.machine == pe.MACHINE_AMD64 // 64-bit
// Compilation timestamp
pe.timestamp > 1609459200 // After Jan 1, 2021
// Section analysis
pe.number_of_sections > 3
pe.sections[0].name == ".text"
// Import analysis
pe.imports("kernel32.dll", "CreateFileA")
pe.imports("ntdll.dll", "NtWriteVirtualMemory")
// Resource analysis
pe.number_of_resources > 0
pe.version_info["CompanyName"] contains "Microsoft"
Advanced PE Conditions:
import "pe"
condition:
pe.is_pe and
// Entropy analysis (high entropy suggests packing)
pe.sections[pe.section_index(".text")].raw_data_size > 0 and
// Import table analysis
pe.number_of_imports < 10 and // Few imports (packed?)
// Section characteristics
for any section in pe.sections : (
section.characteristics & pe.SECTION_MEM_EXECUTE and
section.characteristics & pe.SECTION_MEM_WRITE
) and
// Overlay detection
pe.overlay.size > 0
ELF Module Integration
ELF File Analysis:
import "elf"
condition:
elf.type == elf.ET_EXEC and // Executable file
elf.machine == elf.EM_X86_64 and // x64 architecture
elf.entry_point != 0 and // Valid entry point
// Section analysis
for any section in elf.sections : (
section.name == ".text" and
section.size > 1000
)
Performance Optimization
Writing Efficient Rules
String Optimization:
// GOOD: Specific, unique strings
strings:
$unique_string = "very_specific_malware_identifier_12345"
$specific_hex = { A1 B2 C3 D4 E5 F6 07 08 09 0A }
// BAD: Common, generic strings
strings:
$common = "the" // Too common
$short_hex = { 90 90 } // Too short, very common
Condition Optimization:
// GOOD: Most restrictive conditions first
condition:
filesize < 10MB and // Quick file size check first
pe.is_pe and // Fast PE validation
$rare_string and // Unique string check
any of ($common_string*) // Broader checks last
// BAD: Expensive operations first
condition:
for all section in pe.sections : ( // Expensive loop first
section.size > 1000
) and
filesize < 10MB // Should be first
Rule Compilation
Compiling Rules:
# Compile rules for better performance
yarac rules.yar compiled_rules.yarc
# Use compiled rules
yara compiled_rules.yarc target_file.exe
# Compile multiple rule files
yarac rule1.yar rule2.yar rule3.yar compiled.yarc
Performance Testing:
# Test rule performance
yara -p 4 rules.yar large_file.bin # Use 4 threads
yara -r rules.yar directory/ # Recursive scanning
time yara rules.yar test_files/* # Measure execution time
Scanning Optimization
Command Line Options:
# Performance optimization flags
yara -f # Fast matching (less accuracy)
yara -s # Print matching strings
yara -p 8 # Use 8 threads
yara -l 100 # Limit matches per rule
yara -t 30 # 30 second timeout
yara --max-strings-per-rule=50 # Limit strings per rule
Detecting Malware Families
Emotet Detection Rule
rule Emotet_Banker_Variant
{
meta:
author = "Malware Analysis Team"
description = "Detects Emotet banking trojan variants"
date = "2024-10-07"
family = "Emotet"
severity = "high"
reference = "https://any.run/malware-trends/emotet"
strings:
// API calls commonly used by Emotet
$api1 = "CryptStringToBinaryA" ascii
$api2 = "InternetOpenUrlA" ascii
$api3 = "GetSystemDirectoryA" ascii
// Base64 encoded strings (common in Emotet)
$b64_1 = /[A-Za-z0-9+\/]{100,}={0,2}/ ascii
// Registry persistence
$reg1 = "Software\\Microsoft\\Windows\\CurrentVersion\\Run" ascii
$reg2 = "HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Run" ascii
// Network indicators
$url_pattern = /https?:\/\/[a-zA-Z0-9.-]+\/[a-zA-Z0-9\/_-]+\.php/ ascii
// Hex patterns from Emotet samples
$hex1 = { 8B 45 ?? 83 C0 04 89 45 ?? 8B 4D ?? 3B 4D ?? 73 }
$hex2 = { 6A 40 68 00 30 00 00 68 ?? ?? ?? ?? 6A 00 FF 15 }
condition:
pe.is_pe and
filesize > 100KB and filesize < 5MB and
// Must have API calls and either registry or network indicators
2 of ($api*) and
(
any of ($reg*) or
$url_pattern or
$b64_1
) and
// Hex patterns provide additional confidence
any of ($hex*)
}
Cobalt Strike Detection
rule CobaltStrike_Beacon
{
meta:
author = "Threat Hunter Team"
description = "Detects Cobalt Strike Beacon payloads"
date = "2024-10-07"
family = "Cobalt Strike"
severity = "critical"
strings:
// Cobalt Strike strings
$cs1 = "beacon.dll" ascii nocase
$cs2 = "ReflectiveLoader" ascii
$cs3 = "%02d/%02d/%02d %02d:%02d:%02d" ascii
$cs4 = "StartServiceCtrlDispatcher" ascii
// Malleable C2 default strings
$mall1 = "__cfduMozilla/5.0 (compatible; MSIE" ascii
$mall3 = "SESSIONAPT Research Team"
description = "Detects tools associated with Lazarus Group (APT38)"
date = "2024-10-07"
family = "Lazarus"
severity = "critical"
reference = "MITRE ATT&CK: G0032"
strings:
// Known Lazarus strings
$laz1 = "Global\\DSSENH_" ascii
$laz2 = "abcdefghijklmnopqrstuvwxyz012345" ascii
$laz3 = "bigdata_hashing" ascii
// File paths used by Lazarus
$path1 = "\\System32\\IME\\" ascii
$path2 = "\\Microsoft\\Windows\\IME\\" ascii
$path3 = "\\Users\\Public\\Downloads\\" ascii
// Network patterns
$net1 = /http:\/\/[a-z0-9]{8,12}\.com\/[a-z0-9]{6,8}/ ascii
$net2 = "User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36" ascii
// Cryptographic constants
$crypto1 = { 67 45 23 01 EF CD AB 89 98 BA DC FE 10 32 54 76 }
$crypto2 = { 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 }
// PE characteristics
$pe_cert = "Wemade Entertainment co.,Ltd" ascii
$pe_cert2 = "Neowiz" ascii
condition:
pe.is_pe and
(
// Multiple Lazarus indicators
2 of ($laz*) or
// File path patterns with network activity
(any of ($path*) and any of ($net*)) or
// Crypto patterns (custom encryption)
any of ($crypto*) or
// Known compromised certificates
pe.signatures[0].issuer contains any of ($pe_cert*)
) and
// Size constraints
filesize > 50KB and filesize < 10MB
}
Tool Integration
Python Integration
Basic Python Usage:
import yara
import os
# Compile rules from string
rule_source = '''
rule TestRule {
strings:
$test = "malware"
condition:
$test
}
'''
rules = yara.compile(source=rule_source)
# Scan a file
matches = rules.match('suspicious_file.exe')
for match in matches:
print(f"Rule matched: {match.rule}")
for string in match.strings:
print(f" String: {string.identifier} at offset {string.instances[0].offset}")
# Compile rules from file
rules = yara.compile(filepath='rules.yar')
# Scan directory recursively
def scan_directory(path, rules):
for root, dirs, files in os.walk(path):
for file in files:
file_path = os.path.join(root, file)
try:
matches = rules.match(file_path)
if matches:
print(f"Matches found in {file_path}:")
for match in matches:
print(f" - {match.rule}")
except yara.Error as e:
print(f"Error scanning {file_path}: {e}")
scan_directory('/path/to/scan', rules)
Advanced Python Features:
import yara
import hashlib
# Custom callback for matches
def match_callback(data):
"""Custom callback to process matches"""
print(f"Match found: {data['rule']} in {data['filename']}")
for string in data['strings']:
print(f" String: {string['identifier']} at {string['offset']}")
return yara.CALLBACK_CONTINUE
# External variables
external_vars = {
'filename': 'suspicious.exe',
'extension': '.exe'
}
rules = yara.compile(source='''
rule ExternalVarExample {
condition:
filename contains "suspicious" and
extension == ".exe"
}
''', externals=external_vars)
# Process memory scanning
import psutil
def scan_process_memory(pid):
"""Scan process memory with YARA"""
try:
process = psutil.Process(pid)
# This is a simplified example
# Real implementation would need to handle memory mapping
memory_data = process.memory_info()
# Scan memory regions...
pass
except psutil.NoSuchProcess:
print(f"Process {pid} not found")
VirusTotal Integration
VT Intelligence Queries:
# Search VirusTotal with YARA rules
# Example query on VT Intelligence:
# Search for files matching your rule
yara:your_rule_name
# Combine with other metadata
yara:emotet_detection and type:peexe and size:500KB+
# Search for specific strings in files
content:"specific_malware_string" and type:peexe
# Find files with similar patterns
similar-to:hash_of_known_sample and yara:family_detection
SIEM Integration
Splunk Integration:
# Splunk app for YARA scanning
# Custom command example:
| inputlookup files_to_scan.csv
| eval yara_scan=yara_command(file_path, "rules.yar")
| where match(yara_scan, "malware_family")
| stats count by yara_scan, file_path
| sort -count
ELK Stack Integration:
# Logstash configuration for YARA scanning
filter {
if [file_path] {
ruby {
code => '
require "yara"
rules = Yara.compile(filepath: "/etc/yara/rules.yar")
matches = rules.match(event.get("file_path"))
if matches.any?
event.set("yara_matches", matches.map(&:rule))
end
'
}
}
}
Best Practices
Rule Writing Guidelines
Naming Conventions:
// GOOD: Descriptive names
rule Emotet_Banking_Trojan_2024
rule APT29_Cozy_Bear_Loader
rule Ransomware_Ryuk_Variant_v3
// BAD: Generic names
rule Malware1
rule BadStuff
rule Test
String Selection:
// GOOD: Unique, specific strings
strings:
$unique_api = "SpecialMalwareFunction" ascii
$error_msg = "Error: Cannot connect to C2 server xyz123" ascii
$specific_hex = { A1 B2 C3 D4 E5 F6 [4-8] 09 0A 0B 0C }
// BAD: Common strings that cause false positives
strings:
$common = "kernel32.dll" ascii // Too common
$generic = "error" ascii // Too generic
$short = { 90 90 } // Too short
Performance Guidelines
Condition Optimization:
// GOOD: Fast conditions first
condition:
filesize < 5MB and // Quick check
pe.is_pe and // Fast validation
pe.number_of_sections < 10 and // Simple comparison
$specific_string and // Unique string
2 of ($api_calls*) // String counting
// BAD: Expensive operations first
condition:
for all section in pe.sections : ( // Expensive loop
section.entropy > 7.0
) and
filesize < 5MB // Should be first
Testing and Validation
Rule Testing Framework:
#!/bin/bash
# YARA rule testing script
RULE_FILE="new_rule.yar"
POSITIVE_SAMPLES="test_samples/positive/"
NEGATIVE_SAMPLES="test_samples/negative/"
echo "Testing rule: $RULE_FILE"
# Test positive samples (should match)
echo "Testing positive samples..."
for file in $POSITIVE_SAMPLES*; do
result=$(yara $RULE_FILE "$file")
if [ -z "$result" ]; then
echo "FAIL: $file should match but doesn't"
else
echo "PASS: $file matches as expected"
fi
done
# Test negative samples (should not match)
echo "Testing negative samples..."
for file in $NEGATIVE_SAMPLES*; do
result=$(yara $RULE_FILE "$file")
if [ -n "$result" ]; then
echo "FAIL: $file shouldn't match but does"
else
echo "PASS: $file doesn't match as expected"
fi
done
Documentation Standards
Comprehensive Metadata:
rule Comprehensive_Example
{
meta:
// Required fields
author = "Analyst Name "
description = "Detects XYZ malware family variant seen in Campaign ABC"
date = "2024-10-07"
version = "1.0"
// Classification
family = "XYZ"
severity = "high" // low, medium, high, critical
confidence = "high" // low, medium, high
// Technical details
hash = "a1b2c3d4e5f6789..." // Sample hash
sample = "malware_sample.exe"
filetype = "PE32"
// References
reference = "https://blog.analyst.com/xyz-analysis"
mitre_attack = "T1055" // Process Injection
// Licensing and sharing
license = "Apache 2.0"
tlp = "WHITE"
// Update history
changelog = "v1.0 - Initial rule creation"
strings:
// ... string definitions with comments
condition:
// Well-documented condition logic
pe.is_pe and
filesize > 100KB and filesize < 5MB and // Size constraints
2 of ($api_calls*) and // API usage pattern
any of ($network_indicators*) // Network activity
}
Real-World Case Studies
Case Study 1: Emotet Campaign Detection
Scenario:
A new Emotet campaign was spreading through phishing emails with Word documents containing malicious macros.
Challenge:
- Multiple payload variants
- Packed executables
- Changing C2 infrastructure
- Anti-analysis techniques
YARA Rule Development:
rule Emotet_Campaign_2024_Q4
{
meta:
author = "Incident Response Team"
description = "Detects Emotet campaign from Q4 2024"
date = "2024-10-07"
campaign = "Emotet-Q4-2024"
strings:
// Macro patterns from Word documents
$macro1 = "CreateObject(\"WScript.Shell\")" ascii nocase
$macro2 = "powershell.exe -ep bypass" ascii nocase
// PowerShell download patterns
$ps1 = "DownloadString(" ascii nocase
$ps2 = "Invoke-Expression" ascii nocase
$ps3 = "WebClient" ascii nocase
// Binary payload patterns
$bin1 = { E8 ?? ?? ?? ?? 83 EC 20 53 55 56 57 33 FF }
$bin2 = "RegSvr32" ascii nocase
// Network patterns
$net1 = /https?:\/\/[a-z0-9.-]+\/[a-z0-9]{8,12}\.(exe|dll|bin)/ ascii
condition:
(
// Document with macro
(any of ($macro*) and any of ($ps*)) or
// Binary payload
(pe.is_pe and any of ($bin*) and $net1)
) and
filesize < 10MB
}
Case Study 2: Living-off-the-Land Techniques
Scenario:
Attackers using legitimate Windows tools for malicious purposes.
Detection Strategy:
rule Suspicious_LOLBin_Usage
{
meta:
author = "Threat Hunting Team"
description = "Detects suspicious use of living-off-the-land binaries"
date = "2024-10-07"
technique = "T1218" // Signed Binary Proxy Execution
strings:
// PowerShell suspicious patterns
$ps_encoded = "-EncodedCommand" ascii nocase
$ps_bypass = "-ExecutionPolicy Bypass" ascii nocase
$ps_hidden = "-WindowStyle Hidden" ascii nocase
// WMI suspicious usage
$wmi_exec = "wmic process call create" ascii nocase
$wmi_query = "SELECT * FROM Win32_Process" ascii nocase
// Rundll32 suspicious patterns
$rundll_js = "rundll32.exe javascript:" ascii nocase
$rundll_url = "rundll32.exe url.dll" ascii nocase
// Regsvr32 suspicious patterns
$regsvr_url = "regsvr32 /s /n /u /i:" ascii nocase
// MSBuild suspicious usage
$msbuild_url = "MSBuild.exe" ascii nocase
condition:
2 of ($ps_*) or
any of ($wmi_*) or
any of ($rundll_*) or
$regsvr_url or
($msbuild_url and filesize < 1MB)
}
Case Study 3: Ransomware Family Classification
Multi-Family Detection:
rule Ransomware_Multi_Family
{
meta:
author = "Ransomware Analysis Team"
description = "Classifies multiple ransomware families"
date = "2024-10-07"
strings:
// Ryuk indicators
$ryuk1 = "RyukReadMe.txt" ascii
$ryuk2 = "wake up NEO..." ascii
// Maze indicators
$maze1 = "DECRYPT-FILES.html" ascii
$maze2 = "maze-news.com" ascii
// Conti indicators
$conti1 = "ContiRecover.txt" ascii
$conti2 = "CONTI_LOG.txt" ascii
// LockBit indicators
$lockbit1 = "Restore-My-Files.txt" ascii
$lockbit2 = "LockBit" ascii
// Generic ransomware patterns
$ransom_note = /all your (files|data) (have been|are) encrypted/i ascii
$bitcoin_demand = /send.*bitcoin.*to.*address/i ascii
$extension_change = /\.[a-z]{3,8}$/ ascii
condition:
pe.is_pe and
(
// Specific family detection
any of ($ryuk*) or
any of ($maze*) or
any of ($conti*) or
any of ($lockbit*) or
// Generic ransomware behavior
(2 of ($ransom_note, $bitcoin_demand, $extension_change))
)
}
Advanced Topics
Custom Modules
Creating Custom YARA Modules:
// Example: Custom module for network analysis
import "network_module"
rule Custom_Network_Analysis
{
condition:
network_module.has_suspicious_tld() and
network_module.domain_generation_algorithm_detected() and
network_module.unusual_port_usage()
}
Machine Learning Integration
ML-Enhanced Rules:
import "ml_module"
rule ML_Enhanced_Detection
{
meta:
description = "Uses ML model for enhanced detection"
condition:
pe.is_pe and
ml_module.malware_probability() > 0.8 and
ml_module.family_classification() == "emotet"
}
Conclusion
YARA is an incredibly powerful tool for malware detection and classification. Mastering YARA requires understanding not just the syntax, but also the nuances of malware behavior, performance optimization, and integration with other security tools.
The key to effective YARA rules is balancing specificity with generalization, ensuring high detection rates while minimizing false positives. Regular testing, validation, and updates are essential for maintaining effective detection capabilities.
As the threat landscape continues to evolve, YARA remains an essential tool in the security analyst's toolkit, providing flexible and powerful pattern matching capabilities for both automated and manual analysis workflows.
Additional Resources
- Official YARA Documentation
- YARA GitHub Repository
- YARA-Rules Repository
- VirusTotal Hunting
- Community rule repositories and threat intelligence feeds
Remember to test rules thoroughly and consider privacy and legal implications when scanning files and systems.